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1. EXECUTIVE SUMMARY   
 

This report describes a sectorial analysis of industrial processes in Europe, which follows on from 
the first deliverable in which we presented an overview of AI and BD technologies and their 
application degree in the SPIRE process industries. 

The following consists of a report of the sectorial analysis of industrial processes in Europe, which 
summarises the most relevant industrial processes per process industry sector in Europe, 
highlighting major challenges where AI and BD could play a relevant role. 

In contrast with the first report, which was mainly obtained by a literature review, the present report 
also includes input from real projects and stakeholders, as well as input obtained from the first AI-
CUBE stakeholder workshop held on 2nd February 2021 and from Industry information sites and 
content. 

This document will provide input for the final Task 1.3 of WP1, as well as an adequate starting 
point for the definition of AI-CUBE framework for maturity and penetration level assessment in 
WP2, detailed mapping outlined in WP3, and the roadmap for process industry established in WP4. 

Recall that in D1.1, the original CUBE (from the DoA), was evaluated in the Technologies 
dimension. Now in D1.2 we will review the Processes dimension (sector by sector), and the detailed 
findings of D1.1 and D1.2 will then be consolidated and summarized in D1.3 to produce the final 
cube.  

Also, note that in D1.2 we focus more specifically on a review of the European Union as 
geographical area, with references taken from European projects and industrial companies, 
wherever possible. This is further supported by the presentations of projects from the first 
"stakeholder meeting" (see Annex) with all participants from the Eurozone. 
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2. PROJECT INTRODUCTION 
 

AI-CUBE seeks to enhance the understanding of different digital technologies related to artificial 
intelligence (AI) and big data (BD) applied in process industries for all the SPIRE industrial sectors 
(cement, ceramics, chemicals, engineering, minerals and ores, non-ferrous metals, steel, water). 
Therefore, a close collaboration with industry is mandatory to achieve in-depth insights into 
possible application areas of AI for processes, technology, sensor applicability and assessment of 
their level of penetration. The overall project approach is based on the development of a 3-
dimensional conceptual matrix based on: 1) AI and BG technologies 2) Application areas (activities 
and industrial processes) 3) SPIRE sectors AI-CUBE’s main goal is to define a roadmap in AI and 
the use of BD for the process industry and their maturity level across the industrial sectors, 
including guidelines for implementation. Industrial stakeholders and associations will validate the 
consolidated roadmap ensuring solution feasibility and benefits for the European industrial 
community. A crosslinked vision over process industry sectors shall facilitate cooperation and 
boost technologies deployment at their full potential. An in-depth consultation with industry 
(association, representatives, companies) will provide an overview of current AI and BD algorithms 
application, identifying exploitable synergies among sectors. A deep study of the application areas 
in planning and operations within other industrial sectors facilitates a gap analysis, propitiating 
knowledge sharing among processes and sectors. 

A Multi-Actor Multi-Criteria analysis will obtain a widely supported and consensus-based action 
plan for industrial consultation. This will allow the inclusion of a broad stakeholder community 
representing the main industry actors throughout all the SPIRE sectors, with which the project 
consortium has strong connections that will support sector integration and stakeholders’ 
engagement. 
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3. OBJECTIVES OF THIS DELIVERABLE 
 

The main objective of WP1 is to establish the current technological and industrial landscape 
regarding AI and BD technologies and process industry sectors in Europe, setting the basis of the 
following WPs work in defining mapping tools and the roadmap for AI and BD. In order to   properly 
do so, literature reviews and consultation with relevant stakeholders will start from the very 
beginning of the project. Furthermore, a detailed assessment of both the technological and 
industrial status will allow to adjust the original implementation plan (if needed), expanding it to 
additional macro applications areas. 

The approach and the aim of the activities carried out within Task1.2 consist of general review 
regarding the most relevant processes of the key industry sectors represented by SPIRE (i.e. 
cement, ceramics, chemicals, non-ferrous metals, minerals, steel and water). Process and product-
oriented stages such as R&D, design and production will be addressed, but also marketing, 
sourcing and distribution will be taken into consideration. The review includes some information 
relating to the needs depending on company size/resources, however this will be expanded in 
upcoming project phases and deliverables. An initial shortlist will be generated, and in following 
deliverables and work packages this will be shared within the SPIRE community for complementary 
feedback, aiming at guaranteeing proper representativeness of process industry reality throughout 
Europe. The key focus of the deliverable is to identify the main processes per SPIRE sector, and 
highlighting major challenges of the sectors where AI and BD can play a relevant role. 

Specific challenges related to each of these processes will also be taken into consideration in order 
to drive the subsequent analysis. Coming from the five “macro” areas predefined during the 
preparation stage, a shortlist of industrial tasks or activities which could benefit from the 
deployment of these technologies will be prepared. Also, a focus will be given to existing AI and 
BD applications in process industries nowadays and the leaders for each sector and company size, 
as well as other transversal applications coming from other sectors. Furthermore, by understanding 
the key processes for each sector and the corresponding issues involved, this will set the ground 
for subsequent deliverables and work packages to explore and identify bottlenecks and issues 
which affect the uptake of AI and BD strategies, which will continue through further stakeholder 
interviews and feedback. 

As a complement to this first industrial analysis, an initial list of key industrial stakeholders will be 
identified through a focused analysis of the stakeholders aligned with the one already conducted 
under the T2.1 (see D2.1, Plan for stakeholder involvement), showing direct connection to the 
consortium companies and other relevant actors in the EU scenario. Moreover, possible 
stakeholders meeting events will be drafted to set the basis of the industrial consultation process 
to be developed in WP2.  
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4. METHODOLOGY AND APPROACH  
 

AI-CUBE aims to map the state-of-play of AI and BD in different organisational core-processes, 
especially where AI and BD are (expected) to play a key role in the future, taking into consideration 
the macro-“process areas” in each of the eight SPIRE process industry sectors (e.g. RD&I, process 
control, SC management, predictive maintenance and product customisation and traceability).  

This approach, which will underpin all actions of the AI-CUBE CSA, is visualised in Fig. 1, where 
the four dimensions are represented 1) AI & BD technologies (D.1.1.), 2) SPIRE sectors, 3) 
Organisational core-processes where AI & BD can make a difference (D1.2), and 4) AI & BD 
Maturity Levels.  

Again, we note here that in D1.1, the Technologies dimension was evaluated (resulting in a 
reference taxonomy for the AI and BD technologies), and now in D1.2 we will review the Processes 
dimension (sector by sector). However, the CUBE is not updated until D1.3 when all the information 
(from D1.1 and D1.2) is consolidated and the new dimension categories are defined. 

 

 
 

Figure 1. The original “cube” concept (from DoA) 

In D1.1. we highlighted the key technologies and “heat-mapped” the macro-“process areas” where 
AI/BD focus is strongest in the different process industries. The current Deliverable D1.2. is 
complementing that by zooming in on the “processes” of the different process industry sectors, and 
highlighting the key-challenges these sectors have, where AI/BD can add value/ make a difference 
in the future. 

In order to do so, we applied a methodology and systematic approach consisting of the following 
steps:  

(i) Systematic review of key processes of each SPIRE sector, their challenges and 
applicability of AI and BD as solutions. Consideration is also given to the effect of 
the size/resources of the organization. In this way the project participants have gathered 
knowledge of the core business of each sector and the major processes involved in 
each industry, as well as the bottlenecks and problems for which digitalization in general 
and AI/BD may offer solutions. 
 

(ii) Online Workshop organized and held in collaboration with stakeholders to obtain 
information and feedback with real stories and use cases, applying AI and BD in the 
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SPIRE sectors. In this way we also create a core group of stakeholders as a starting 
point for future work packages of the project. 

This more in-depth information in key sector challenges, and to which macro-processes AI/BD may 
add value, provides insights in the current and future focus of AI and BD in different process 
industries (macro-areas) and their drivers. This will provide a basis for mapping maturity levels of 
these technologies, in the next phases of the project, in order to enable comparative analysis 
between states of development, transferability and RD&I needs towards future AI and BD business 
cases to be defined within the AI-CUBE project.  

In the following chapters, we will hence highlight for each SPIRE sector: 

 A summary of the key production and supply chain processes 

 The key challenges the sector has to affront towards sustained or enhanced 
competitiveness 

 Map per SPIRE sector, where in the key production and/or supply chain processes 
indicated in the “CUBE”, AI/BD can add value to tackle these challenges (focus) 

Once the focus of AI and BD use has been “cubed”, future AI and BD driven business cases 
for the European process industries will be defined together with industry stakeholders, several 
of whom have already indicated support (see Letters of Support), and some additional ones 
have been identified in this Deliverable.  

Eventually a gap analysis will be carried out to define required skills, data and RD&I within a 
set of roadmaps, targeting amongst others the key challenges per sector where AI/BD can 
make a difference, as outlined in this Deliverable.  
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5. REVIEW OF MOST RELEVANT PROCESSES OF THE SPIRE INDUSTRY 

SECTORS 

In the following paragraphs we perform a review of the most relevant processes of the SPIRE 
industrial sectors. For each sector, in turn, we detail the key processes, and in each case the most 
relevant challenges and issues are identified, together with an analysis of the applicability of AI 
and BD technologies to improve the current functionality. 

Before commencing with the sector by sector review, we present some transversal technologies 
with potential application to any field of processing [1]. Moreover, they are of possible relevance to 
many stages of the supply chain (Figure 2). Indeed, in some respects, they can transform the 
concept of a supply chain as distinct stages of economic activity. This is perhaps most obviously 
exemplified with Additive Manufacturing (AM) where, in practice, the production process becomes 
almost indistinguishable from design and logistics. 

 

Figure 2 - Potential application of three game-changing technologies along the value chain [Source: Eurofound, The Future 
of Manufacturing in Europe – Game changing technologies].  

The creation of ‘digital twins’ of all components in advanced process and manufacturing industries 
can minimise the risk of production stoppages and downtime due to accidental use of the wrong 
components in production processes. Forms of Industrial additive manufacturing (3D printing) have 
been effective in the 3D printing of both plastic and metal [2]. If Global Value Chains (GVCs) suffer 
from dislocation [3], as happened during the COVID-19 outbreak, and crucial components are 
unavailable from particular countries due to lockdowns and/ or temporary manufacturing closures, 
then having a digital inventory with digital twins could enable industry to source components from 
alternative suppliers. 

There are also potential operational efficiency savings in different sectors. For example, in the 
energy sector, process improvements could result from the collection and analysis of data from 
sensors to provide predictive maintenance capabilities. In the area of transportation and 
logistics, there is scope to analyse bottlenecks in transportation across global value chains so as 
to identify potential improvements and to reduce transport costs [4]. 

In critical infrastructures, video surveillance systems are a key factor both for the internal security 
of the facilities and for the safety of workers. Due to the proliferation of tools to perfect and trains 
computer-vision solutions, it is also possible to propose solutions to monitor processes. This makes 
it possible to match images with other parameters coming from sensors, environmental data, etc., 
thus enabling more complete solutions for event detection. As example, a solution presented IoT 
Solutions World Congress (2018) which main idea was to automate the restricted access to 
different areas of the process, automatically detecting people and PPEs (Personal Protective 
Equipment), aiming to preventive security with a real-time record of prevention of occupational 
risks [5]. 
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5.1 WATER SECTOR 

The water sector’s value chain links the environment and water resources to industries and utilities, 
the utilities to their customers, and both industries and customers back to the environment. 

Utilities are complex organisations, with multiple activity areas and organisational layers, networks 
of data management systems, and disparate physical assets. 

The supply chain of water and wastewater utility organisations always starts from water sources: 

 Watershed; 

 Surface, Groundwater and Water Reuse; 

 Wastewater Effluent; 
and typically involves processes like: 

 Water Collection; 

 Treatment; 

 Distribution. 
Water utilities and cities are now facing severe and demanding challenges. For example, losses 
due to natural disasters or dangerous human activities are mounting and on average cost 
governments over USD 300 billion globally each year [6]. 

The main challenges faced by the water industry can be summarised as follows: 

 scarcer and less reliable water resources; 

 severe weather patterns (e.g. floods and droughts or sea-level rise) make water less 
affordable, scarcer and with quality issues. 

However, many more and disparate are the sources of concern and problems to tackle to have 
global societal impact, like e.g. groundwater depletion, untreated sewage discharges, water 
shortage and supply. 

In order to become more resilient to the impacts of increasingly frequent, severe and hazardous 
challenges, the adoption of digital innovation, leveraging data and analytics, will be a necessary 
step. Water 4.0 could inform better system-level decisions and improve future outcomes for 
watershed management, operations, maintenance, capital planning and customer service [6]. 

The increasing complexity in the governance and management of water systems is indeed making 
room for the adoption of compelling transformative digital solutions (cloud, mobile, intelligent 
infrastructure, sensors, communication networks, and analytics and BD). For example, remote 
sensing and digital twin technologies deliver connectivity between utilities and their diversified 
water supplies. Multiple digital technologies can then provide connectivity within a utility’s 
operations. Customer service and customer analytics tools are then able to bridge the gap between 
a utility and its clients, and open data platforms and citizen science projects can provide 
connectivity from the customer back to their water supply [6]. 

AI, BD and related enabling technologies will allow new and more effective system configurations, 
where surface water, groundwater and stormwater are mixed as potential sources; AI-enabled 
solutions are applied to separate waste by source (intelligent waste water treatment by source) 
and implementation of reclamation schemes (wastewater recycling, nutrient and energy recovery 
schemes); and mixed land-use promotes cascading water uses so to improve resource efficiency 
and limit unsustainable pressure on natural resources [6]. 
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As reported by Kalanithy Vairavamoorthy, Executive Director of the International Water 
Association, the uptake of digital technologies and integration into water services will allow to tackle 
challenges offering smart solutions [6]: 

 Smart by design: adaptive ‘off-grid’, distributed systems that provide diversity, and 
modularity, characteristics critical for resiliency;  

 Smart Use: combining concepts of water fit for purpose (different grades for different uses), 
and resource recovery and reuse (of water, energy, and nutrients from wastewater);  

 Smart (Digital) Control: IoT supporting data-driven models that can help integrate and 
optimise smart pumps, valves, sensors and actuators, and enabling each device to “talk” 
to each other, or for that matter to a customer’s smartphone, and send real-time information 
to be accessed and shared via the cloud. 

Emerging smart city initiatives on their turn will foster digitalisation across industries. 

Industry uses water for multiple applications, each one with its own technical requirements and 
quality specifications. Used water, on its turn, needs treatment to make it fit for new uses or for 
disposal in a way compliant with environmental regulations.  

An industrial water treatment system mainly treats water in view of one of the following purposes:  

 consumption; 

 manufacturing; 

 disposal. 

Usual industrial water treatment systems commonly include (see also figures below): 

 Raw water treatment systems; 

 Cooling tower treatment; 

 Boiler feed water systems; 

 Wastewater treatment systems. 

 

Figure 3- Wastewater treatment plant 

Pre-treatment and optimization of the source water are typical processes in the raw water treatment 
systems.  

Suspended/colloidal elements, iron, microorganisms and hardness are usually removed during raw 
water treatment. Often, raw water treatment is aimed at protecting downstream machines and tools 
from scaling, fouling, corrosion, and other damages or precocious wear due to elements 
contaminating the source water [7,8,9]. 
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Removing harmful impurities (e.g. dissolved or suspended solids, inorganic matter, biological 
materials, sulfates) prior to entering the boiler or cooling towers, and controlling the acidity and 
conductivity of the water are critical processes in boiler feed water, circulation water, blowdown 
water and cooling tower water treatment systems.  

Industrial waste streams need then to be reused or disposed of by releasing them into the 
environment abiding by compliance regulations.  

Key processes of the wastewater treatment are clarification (removal of suspended solids, both 
mineral and organic, from the raw water), disinfection (reduction of the bacteria, virus and protozoa 
populations), softening (removal of calcium, magnesium, and certain other metal cations) and 
distribution [7,8,9]. 

Industrial water treatment faces several major challenges [10], such as: 

 The need for steady reassessment of contaminants and for a comprehensive chemical and 
toxicological analysis;  

 Reducing the environmental footprint, mainly due to the disposal of the organic matter 
stripped from the wastewater; 

 Reducing energy consumption, as filtering wastewater is an incredibly energy demanding 
endeavor; 

 The need for new tools to empower workers to always make the best decisions in real time. 

AI-enabled solutions have much to offer to the water industry in order to tackle the above 
challenges [11]: 

 AI-driven solutions can leverage data analysis to produce more effective water treatment 
processes; 

 Automation and innovation have a critical role to play to make wastewater management 
leaner, less energy intensive, more sustainable and more easily predictable and controlled;  

 Predictive maintenance, high-resolution remote sensing techniques, smart information and 
communication technologies can generate improvements not only in the detection of 
harmful microorganisms, but also in water-use efficiency; 

 AI can play a pivotal role in the management of water resources also in connection with 
water utilities; 

 Data driven decision making would allow for immediate control and prevention of hazardous 
situations, whenever possible. 

 Use of AI and BD to anticipate/manage the impact of climate change (draughts and 
flooding). The use of weather predictions in combination with water management systems 
is also relevant here. 

 Use of AI /BD for managing the governance of the full water cycle, including all stakeholders 
from Cities to industries and agriculture, predicting/planning the trade-off of water 
availability (different “qualities” of water to be used fit-for-purpose) in interdependent 
circular water systems for all types of users. 

The introduction of a large number of (cheap) sensors throughout the capillary water distribution 
network on society will open-up new opportunities to analyse, plan and manage water distribution 
in a complex system (similar to AI/BD based supply chain management Decision Support systems, 
in other sectors). 

This concept of distributed sensors network, combined with apps used by citizens, will enable new 
business models (e.g. based on the actual use of different qualities of water, in combination with 

incentives  this will feedback into the AI-enabled scenario planning solutions). 
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Experts from process industry, industry 4.0 and industrial water management believe that water 
management, beyond moving towards digital new approaches, should also become more flexible 
and integrated in industrial production, municipal and water resources management [7,12,13].  

In Figure 4, courtesy of [12], shows how horizontal integration (with industries, municipalities and 
water resource managers) and information integration, implemented within a properly orchestrated 
control and regulation system, are of essence for a successful future deployment of 4.0 practices 
in the water industry. 

 

Figure 4 – Integration of processes, systems and competencies in the water industry 

5.2 STEEL SECTOR 

Around 29% of the total crude steel worldwide is produced by the electric furnace, compared to 
the 71% for iron-based production route [14]. High amount of fossil fuel consumption by coal use 
in iron-based steel production arise environmental concerns. Scrap-based production, compared 
to iron-based, consumes less energy (74%) and water (40%). In addition, it produces less pollution 
(76%) and environmental emissions (86%) [15]. Also, there is high amount of CO2 emission in iron-
based steel production, which accounts for ten times more than scrap-based production. By 2050 
the availability of scrap will be almost doubled, deriving majorly from obsolete scrap [16]. 
Consequently, it is expected that global scrap-based steel production will increase from 520 million 
tons in 2018 to 733 million tons in 2030. Therefore, the demand for scrap will increase from 708 
million tons in 2018 to 1,067 million tons in 2030 [15]. 

Therefore, new production processes foster the European electric steel producers in the transition 
towards a ‘recycling society’. The main pathways of this transition are smart carbon usage and 
carbon direct avoidance [17]. The benefits of using these solutions are less CO2 emission, 
efficiency in the fossil fuel consumption, and less consumption of materials such as nickel, chrome, 
iron, and silica. Scrap and slag are the two crucial materials in steel production inbound and 
outbound flows, respectively, facilitating the steel value chain in a circular economy.  
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Among the six key components identified by the Sustainable Process Industry through Resource 
and Energy Efficiency (SPIRE), based on the 2030 vision of the research and innovation roadmap 
process industry [18], slag facilitates the valorisation and smarter use of feedstock (feed), and 
causes the avoidance and re-use of waste streams through the context of closed-loop value chains 
(waste2Resource). Among the strategic objectives set out by the European Steel Technology 
Platform [19], there is a particular focus on scrap and ferrous slag as the primary critical material 
in steel circular economy. It addresses the ferrous slag analysis as a new trend which can maximise 
the valorisation of the steel by-products in a local economy.   

Therefore, we shortly describe the electric arc furnace (EAF) process. The main raw material is 
steel scrap and other inputs are pig iron and fluxes (Figure 5). Fluxes are used to remove the 
impurities in EAF and majorly are lime and dolomite. These raw materials are melted in the furnace 
using electric energy. Since scrap comes in different quality classes, quality control of the EAF 
liquid steel is required to pass the desired quality level to assure the correct melting. Low quality 
classes can cause the increase of pollutant elements in the slag formed in EAF, namely black slag. 

To produce high-quality steel, the liquid steel produced by EAF is used in secondary metallurgy 
(ladle furnace-LF). In LF, like EAF, fluxes such as lime and dolomite are added. With the addition 
of alloys, steel is desulfurized, and high-quality steel is produced by means of electric energy and 
argon gas in LF. Second quality control is carried out in this phase. The liquid steel is then refined 
and goes through continuous casting for the production of billets, blooms, and slabs. In the final 
stage of rolling, high-quality steel products are produced.  

The fluxes used in EAF and LF are chemically combined with the melted steel and form the slag 
on top of the furnace. The slag derived by EAF and LF production is chemically and physically 
different. EAF slag (black slag) is formed as black stony material after cooling, while LF slag (white 
slag) is typically formed as white powder material after cooling. Black slag is usually left in an open 
area to be cooled down. Water spray and air cooling are the additional activities which can facilitate 
the cooling phase. Black slag then undergoes physical treatments of crushing so that the desired 
grain sizes for different applications are obtained. Due to the presence of lime in WS, it can be 
directly applied as feedstock in EAF. White slag treatment is still under study and innovative 
technologies are under development.  

 

Figure 5 - Steel production process 

The role of AI and BD in the steel sector can be summarised as follows: 

 Production process: steel production process can expose workers to dangerous working 
conditions. AI can support the real-time integrated control of the different production phases 



D1.2 – SECTORIAL ANALYSIS OF INDUSTRIAL PROCESSES IN EUROPE 
Dissemination level - [PU] 
Disclosure or reproduction without prior permission of AI-CUBE is prohibited 
 

 

 

                                                       

 

PAGE   18 | 53 

 

enabling cyber-physical systems by new way to formalize and treat BD collected along the 
process from machines, devices etc.  

 Energy consumption: the utilisation of AI algorithms can assure flexibility in production. 
Innovative systems can help to smooth the energy consumption along the period by 
suggesting ways to reduce it in the peak periods, maximising the renewable energies, 
minimising the generation costs, and reprogramming the consumption profiles.  

 Raw material quality control: in case of EAF, the scraps arriving to the plant can be 
classified with a high precision and timely manner thanks to advance sensing systems and 
AI algorithms. Furthermore, these systems can detect the classified scrap in the inventory 
and provide a real-time monitoring of the inventory level for supporting production planning.  

 Raw material handling: Intelligent robots enabled with AI can facilitate the scrap loading 
and transferring from the warehouse to the furnace avoiding human interaction in highly 
dangerous environments.  

 Monitoring and planning: through automated in-house and external systems (such as GPS 
and laser sensors), the availability and timing of the materials can be tracked in real-time. 
The in-house monitoring consists the inventory level, position of the raw material and 
resources (e.g. internal transport modes) in the warehouse, operators’ guide for timely 
picking and loading activities. Consequently, higher security for the employees is achieved 
in the workplace. The external monitoring consists of the real-time tracking of transport 
modes in the inbound and outbound flows.  

 Disruption prevention in decision-support solutions: the process and supply chain of steel 
production encounter vulnerabilities due to several factors, such as suppliers delays and 
production disruptions. The current optimisation algorithms mainly focus on a single 
machine or a part of the supply chain. An integrated decision-support tool based on the 
optimisation of the whole value chain would be based on BD collected from different 
sources (machines, trucks, suppliers, warehouse) and can support event-management, 
and optimisation of the operations.  

 Market analysis and forecasting: an online marketplace facilitates both the administrative 
and operative procedure to ensure a high-level collaboration with the other stakeholders in 
the value chain. An intelligent system for customer relationships management (CRM) and 
online monitoring and order management systems for the suppliers are among the 
prominent aspects in this criterion. 

 Value chain integration for circular economy: an intelligent system that not only facilitates 
the forward flows of the raw materials and primary products, but also manages and 
integrates it with the reverse flows to the factory, waste management systems, and other 
value-added activities. To this end, it is critical to have the capacity to manage and analyse 
a huge amount of data.  

5.3 MINERALS SECTOR 

According to [20] which details the mining process, firstly the type of mining operation has to be 
established, for example, open pit or underground. To define the ore from the waste rock, samples 
are taken and assayed. The main processes for mining are: crushing, transport, grinding and sizing, 
leaching and adsorption, elution and electrowinning, bullion production and water treatment. 

[21] details the key stages in the mining process: the first step is the prospecting/surveying. Skilled 
mine workers who can judge the quality of the lode are much sought after. This is followed by 
reaching the ore; breaking the ore underground; bringing the ore to the surface; dressing the ore; 
smelting the ore.  
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According to [22], a key aspect is the type of mineral, which determines how it is extracted and 
how it is post-processed. For example, coal, diamonds, iron ore, gold, etc. and whether the 
extraction is surface or underground. This results in different issues, challenges and required 
processes. 

In [23], a major European service company dedicated to the mining industry gives details of what 
type of services they offer, which forms a useful list of the typical activities and processes which 
are performed in the mining industry and mineral processing. This includes, grinding mill upgrades, 
cone crusher, railcar dumper system, shutdown planning and scheduling, research and testing, 
repair/rebuild, process training, process feasibility, remote condition monitoring, corrective 
maintenance, condition monitoring, remote troubleshooting, process evaluations, preventative 
maintenance, mill reline, online monitoring, health and safety. 

In [24] an evaluation is given of the challenges and opportunities for the 
mining industry in the future. According to the authors, key issues include: (i) 
the safeguarding of known resources; (ii) high-quality (scientifically and 
technologically driven) exploration surveys; (iii) improvements in mining and 
mineral transformation/ beneficiation; (iv) advances in consistent 
combinations of primary and secondary sources of raw materials, along with 
higher concerns on their judicious use; (v) effective and stable mining 
policies.  

On the other hand, [25] evaluates process control challenges and 
opportunities in mineral processing. The authors discuss the significance of 

different phases and states: solids  water  air creating foam and froth. It 
is stated that all fluids are non-Newtonian, and the mineral content can 
double in a matter of minutes, changing the flow characteristics dramatically. 
The processes are complex, with many circulating loads. Another key aspect 
is with respect to planning, of setting realistic targets. For example, in the 
grinding stage, an operator has a number of parameters that can be 
evaluated in real time which provide an indication of how the mill is 
performing. As a baseline, ore hardness is quoted as the amount of power 
required to grind a mass of ore from one size to another, expressed in 
kilowatts per ton. 

Another key aspect is the operational side: when there is a problem, the 
natural response of the operator is to cut back on the feed. However, this can 
result in a high loss of production if there are continual problems, as well as 
an increase in the amount of off-spec product due to poor particle size 
control, and the amount of energy used for grinding and recirculation of 
recycled material rather than for fresh feed. 

It is stated that success requires an extensive and focused onsite study with 
communication and flexible technology. The plant's feed, equipment, special 
operational practices and culture must be understood, and changes made as 
needed to both. One systematic approach to this, is to develop on-site a 
definition of best practices. This requires working closely with operators over 
a period of time to see how operations change, based on problems and staff. 
Two key roles which provide know-how and synergy are the metallurgist and 
the controls engineer.  

Figure 6 - Mining 
operations steps for 

extraction and 
processing 
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A survey of technological trends is given in [26] for the contemporary mining industry. Five main 
areas are defined: (i) Spatial data visualisation. This is considered a disruptive technology; (ii) 
Geographic information systems; (iii) Artificial intelligence; (iv) Automated drones; (v) Use of 
renewable energy by the Mining Industry. 

In the case of AI, it is cited as now taking a lead in decision-making for knowledge based companies. 
They use smart data and machine learning to improve operational efficiency, mine safety, and 
production workflow. It is stated that implementing artificial intelligence technology generates day-
to-day data in half the time than what has been used previously in the field. Also, the mining 
industry evolves rapidly, so machine learning and AI impact the way mines today make choices for 
the future. The following are indicated as some ways the latest technology in artificial intelligence 
impacts the working mine: 

Mineral processing and exploration: companies can find 
minerals more easily by using high-performance AI 
technology.  

Autonomous vehicles and drillers: over the past decade, 
mining companies have been incorporating autonomous 
vehicles in their pit-to-pit operations. Self-driving trucks can 
easily navigate through narrow tunnels with AI (SLAM 
technology). Now, drilling systems are also simplified with a 
single operator that controls several drill rigs at once. 

The overall objective is to obtain an optimal industry efficiency. As the mining industry attempts to 
reduce costs and lessen its environmental impact, techniques such as AI can help to ensure safety 
and reliability for both miners and the land that mines use. 

Finally, in [27], different transformation technologies are discussed for the mining industry. They 
especially highlight: internet of things, robotics, plasma (to increase yields), 3d imaging 
technologies, automated drilling, remote operations control & monitoring. 

5.4 NON-FERROUS METALS 

Non-ferrous metals’ annual production amounts to 47 million tons, with more than 900 plants 
across Europe. Its annual turnover is €120 billion in Europe, consisting of 77% in fabrication and 
transformation, 21% in refineries, and 2% in mining sectors [28]. Their direct job creation amounts 
to 500,000, and around 2 million, indirectly. Non-ferrous metals represent 20% of the world market. 
The EU’s core sectors include batteries (11%), construction (24%), durables (5%), industry (20%), 
packaging (11%), and transport (29%) [29].  

Non-ferrous metals have a high potential of recyclability, thus making them at the forefront of the 
circular economy. While 82% of the worldwide production is through the primary route, this share 
in the EU amounts to 50%, representing the EU’s aim towards a circular Europe. 90% of the scraps 
are recycled from buildings, 90% from transport, and 60% from packaging [29]. Thus, almost half 
of the base metals in the EU are produced through the secondary route, with a potential increase 
of 50% by 2050. The overall GHG emissions from their production process have reduced by 60% 
since 1990, and a reduction of 81% is foreseen for 2050 [30]. Compared to other manufacturing 
sectors, non-ferrous metals production is the most energy-intensive process, accounting for 58% 
share among the other energy consumed throughout the process. Therefore, optimising production 
through AI and BD will significantly affect the energy efficiency, climate protection, and resource 
efficiency.  

Figure 7 - Autonomous vehicles used in 
mining operations 
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Aluminium and copper are the most 
predominant base metals produced in Europe. 
Their production is estimated to increase in the 
coming decades due to the higher availability of 
scrap. In particular, Aluminium scrap will 
increase from 4.5 million tons to 9 million tons in 
2050 and copper scrap will be almost doubled 
from 1.6 million tons currently available [30]. 

The aluminium primary production process, as 

the youngest and largest sector, consists of two 

main stages, namely alumina (aluminium oxide) 

production from bauxite and aluminium 

production from alumina. Each ton of bauxite 

produces 20-25 tons of aluminium. The bauxite 

can be extracted from the mines in the EU or imported from outside the EU. In the first stage, 

known as the Bayer process, the bauxite undergoes the grinding, digestion (through heating by 

caustic soda), and precipitation phases. The alumina is gained after removing the impurities (such 

as iron) in the form of red mud and calcination (of around 1000 °C) of the purified proportion. In the 

second stage, alumina is inserted into the electrolysis cell (also known as pot) for electrolytic 

reduction. Alumina in the pot is combined with sodium aluminium fluoride (cryolite) at a temperature 

of approximately 960 °C provided by electric energy. 

The raw material from the secondary production process can be either the new scrap generated 
from the wrought and cast production, or old scrap, from the end-of-life (EoL) products. This 
process not only fosters circularity in the production but also its energy consumption is much less 
than the primary production. The main process consists of melting the scrap in the furnace. The 
furnace type depends on the characteristics of the scrap. Some examples are the induction, rotary 
arc, and plasma furnace. 

The pyro-metallurgical production route consists of 80% of copper production. The process phases 
include concentration to matte smelting, converting, fire-refining, electrolytic refining, and melting 
and casting. In the matte smelting phase, concentrates are first dried to lose around 7-8% moisture 
content. The drying can be carried out through either hot gas rotary driers or steam-heated coil 
dryers. The dried concentrate is then smelted and roasted in a furnace to reduce the ores’ impurity 
contents. Iron silicates account for a high proportion of these solid impurities. The product of this 
phase is a mixture of copper sulphide and iron sulphide, known as matte. Depending on the 
impurities content, partial roasting may be carried out. There are two smelting processes, namely 
bath and flash smelting. The difference between the two is primarily due to the degree of oxygen 
enrichment. Flash smelting uses a lower degree of oxygen enrichment than bath smelting. In the 
second phase, matte is converted to blister copper (consisting of 98.5% copper) through one of 
the two methods of batch or continuous process. These processes oxidise the copper sulphide by 
oxygen.  

For further purification of blister copper, it goes through fire-refining, where air and fluxing elements 
(such as hydrocarbons and ammonia) result in an oxidisation reactivity. This process is carried out 
in an Anode furnace. The final refining is performed by an electrolytic cell, consisting of a cast 
copper anode and a cathode that contains copper sulphate and sulphuric acid. Copper cathodes 
produced are then transferred to the melting and casting phase to produce the final product. The 
secondary production method follows the same processes as the pyro-metallurgical process. 

Figure 8 - Primary production of aluminium from alumina [30] 
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AI and BD have a profound impact on the aforementioned processes to reduce energy 
consumption. Therefore, new IoT solutions are required not only to measure the energy 
consumption for a single machine but also measure the energy consumed throughout the 
production process [31]. Furthermore, an automated system for unifying the scrap quality classes 
prevents the additional processes and results in higher energy consumption for refining phases.  

Unlike ferrous metals, the wide variety of product mixes and production processes in the non-
ferrous sector results in unique AI solutions for each plant. Therefore, the role of the plant’s 
production historical data is more dominant than the domain knowledge. This complexity 
emphasises the decision-support systems through machine learning techniques such as case-
based reasoning [32]. However, the uncertainty and randomness in the knowledge and experience 
should not be overlooked [33].  Also, the adaptability of AI solutions highly depends on the 
collaboration of managers, engineers, and workers in a production plant. This complexity in the 
production process is also evident in the raw materials, where just a low proportion of them are the 
ores, and a high proportion consists of fluxes and other materials from different sources. Thus, the 
integration of the actors in the raw material provision from the suppliers to the plant requires timely 
and precise solutions. This aspect emphasises the role of decision-support systems in inbound 
logistics. 

5.5 ENGINEERING 

In this analysis, we assumed Engineering sector as the Engineering process concept applied to 
any industrial process including the SPIRE sectors. Engineering a process starts with the design 
of a solution followed by its implementation in an industry or its construction. This extends into 
every area of engineering types. Here are the main steps to take in the engineering process design 
and its implementation: 

Table 1 - Engineering process design and implementation 

PROCESS ACTIONS INDICATORS 

Problem definition Ask the customer 
Needs and Constraints 
Identification opportunities and 
requirements 

Information 

Research Current solutions in the market 
Adaptable technologies 
Different specialists  

Feasibility study 

Identification/creati
on of solutions 

Brainstorming 
Conceptualization 

Develop as many solutions as 
possible 

Choose a 
Promising Solution 

Revisit earlier steps 
Comparison 

Benefits 

Test solution Create and Build a Prototype 
Testing and analysis 
Solution redesign 

Effectiveness (data collection and 
analysis) 
Advantages and disadvantages 

Process 
implementation 

Build the solution 
Industrial deployment 
Process integration 

Operationalization (parameters) 
Optimization (adjustment) 
Information collection 

Analysis and 
improvement 

Process feedback 
Iteration 

Sensors, data collection 
Data analysis 



D1.2 – SECTORIAL ANALYSIS OF INDUSTRIAL PROCESSES IN EUROPE 
Dissemination level - [PU] 
Disclosure or reproduction without prior permission of AI-CUBE is prohibited 
 

 

 

                                                       

 

PAGE   23 | 53 

 

AI-powered technologies can help deliver more efficient designs than previously achievable by 
eliminating waste in the design process. Innovation can be brought to the market faster as AI 
facilitates lower process cycle times and an increased focus on real-time negotiations and other 
interactions. Lead times to market can be accelerated through the use of Virtual and Augmented 
Reality, whose adoption rates are expected to increase significantly [34].  

The optimization of an engineering process can be improved with AI. Using data from Information 
Technology (IT) and Operational Technology (OT) sources, and insights from the company’s 
process engineers, the production line of a Chemical industry [35] was modelled and a specific 
process-based data schema developed. Once modelled, supervised ML was used on real-time 
data to identify five primary root causes suspected of contributing to the high formation of side 
products. Then a predictive simulation was conducted to analyse different scenarios and determine 
the optimal operational conditions.  

The implementation of the AI engineering solutions in the  process and manufacturing industries 
brings two main advantages: i) an effective and accurate information processing, and ii) a powerful 
data storage and calculation. AI technology builds production model through computer simulation 
system and makes comprehensive data analysis to make relevant precautious measures in case 
of emergency, which guarantees the orderly production system, reduces the possible capital loss 
of manufacturing enterprises, and also greatly improves the production efficiency and accuracy of 
manufacturing. Applications of artificial intelligence in manufacturing and process  industries [36]: 

 Fault diagnosis. AI can automatically classify and categorize information to improve the 

accuracy of calculation, avoiding errors or failures and diagnosing. 

 Quality inspection. Based on deep learning machine vision technology, AI detection makes 

quality inspection standards more unified, stable, and faster detection. 

 Safer working places. AI recognizes the safety status of working places and warns the workers 

in case of emergency, set up visiting limitations of workers (image recognition), assess 

whether the workers on the spot are conforming to the safety regulations.  

 In product development. AI (due to its powerful data storage and effective information 

processing) can help its clients find their desirable products and thus shorten the time for 

products design.  

 In products manufacturing procedure, AI can help bring about most accurate products.  

 In products rear service, AI provide far-distance equipment maintenance, spare parts 

management, routine or predictive equipment maintenance, fault warning and diagnosis, 

products upgrading, and etc. 

Regarding the adoption according to the company size, independently of sectors, large 
companies tend to invest in AI faster at scale [37]. This is typical of digital adoption, in which, for 
instance, small and midsized businesses have typically lagged behind in their decision to invest in 
new technologies. 

5.6 CHEMICALS SECTOR 

The core activity of the chemical industry is the production of materials (e.g. plastics or coatings) 
for further processing in other industries. Here, different processes are used for the conversion of 
the materials, such as heating, mixing, grinding and cooling.  Particular challenges in the chemical 
industry are process monitoring and the supply and disposal of the main and by-products, as 
process safety and ecological aspects are taking on an increasingly present role in society. 
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The term “green chemistry” has become increasingly important in recent decades and aims to 
make chemistry more sustainable in laboratories and industry. Already in 1998, Paul Anastas and 
the chemist John Warner developed twelve principles of green chemistry.  

 waste avoidance 
 atomic efficiency 
 safer chemical transformations 
 development of safer substances 
 safer chemical solvents 
 energy efficiency 
 renewable resources 
 reduce derivatives 
 use catalysts 
 naturally degradable 
 real-time monitoring of waste disposal 
 basic risk avoidance 

These principles aim on the one hand to maximise resource efficiency and thus material, energy 
and economic efficiency, and on the other hand to eliminate or at least minimise hazards and waste. 
[38] In addition, the guidelines confront the industry with technical and process challenges where 
established methods are reaching their limits. 

Since 2011, the number of employees in the chemical and pharmaceutical industry has been 
growing significantly. In this context, the proportion of highly qualified workers has also recorded a 
slight but continuous upward trend. Since 2008, there has also been a significant increase in sales 
in both industries. [39] In 2018, the chemical and pharmaceutical industry accounts for more than 
10% of the share of sales in manufacturing. [40]  

Besides, the share of both industries in terms of spending on innovation is above the average for 
manufacturing.[39] The increase in highly qualified workers, as well as the high spending on 
innovation, can be placed in a direct connection with the growing importance of artificial intelligence 
in the chemical and pharmaceutical industry in the future. 

Important areas for the application of AI methods in chemistry are research and development, 
production, logistics and product tracking, and maintenance.  Computer systems are being trained 
with big databases and are helping chemists and employees along the entire supply chain to make 
decisions at the individual company levels with different focuses.  

Figure 9 shows the correspondence of the core processes of the chemical industry to the individual 
company levels. t the first two levels, “Enterprise management level” and “Production management 
level”, artificial intelligence plays a role primarily in the area of logistics, for example concerning 
enterprise resource planning in direct connection with production planning. Here, the focus is 
particularly on the processes of uninterrupted production supply due to continuous production in 
the chemical industry. Forward-looking planning and forecasting have a significant influence on 
process quality here. In addition, the topic of handling by-products is becoming increasingly 
important, as ecological and economic goals play a role in this area. This circular economy 
presents the chemical industry with further process-related challenges in the future 

While at the two lower levels (Fig. 9), “Process control level” and “Field level”, the functions of 
artificial intelligence are designed more for direct process monitoring through control systems and 
process analyser technology.  
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A high degree of process reliability is required in order to be able to manufacture efficiently and 
safely. Continuous sensor-based monitoring of chemical process steps is a core aspect of the 
industry. Due to the increasing complexity and variety of products, the existing plants are more and 
more pushed to their limits. In this context, optimization of porosity is necessary with regard to the 
control of the variety of products and an adaptive planning of the aggregate occupancy. In addition, 
the chemical industry collects a large amount of sensor data from the respective plants, which is 
not yet used comprehensively for process optimization. There is great potential for maintenance 
planning and optimized plant occupancy in this field.  

 

Figure 9 - Correspondence of the core processes  of the chemical industry to the individual company levels. [9] 

Especially in the area of chemical logistics, a large field of application for artificial intelligence is 
developing. Real-time tracking of dangerous goods shipments, collaborative planning processes 
along the supply chain, and automated cargo management all require the use of AI components. 
The German chemical and pharmaceutical company Merck relies on intelligent supply chains in 
this context. Intending to have enough products in stock to satisfy the existing demand on the 
market without product bottlenecks, the company uses the “Self Driving Operations” system. The 
program is fed with both internal information such as stock levels and production data as well as 
global information such as economic data or weather data. This enables the software to predict 
how demand will develop depending on external influencing factors and worldwide. An example of 
this would be the emergence of a flu epidemic. [39]  

Another important component in the chemical industry at the "Production management level" is 
product tracking. AI components enable extensive product traceability and preventive intervention 
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in processes to improve the efficiency and profitability of a company. Here, the first applications 
are available that allow products to be tracked worldwide and the data obtained to be structured 
and analysed across the board with the help of artificial intelligence. Important data sources here 
are social media, scientific literature or direct information from patients and doctors regarding 
reports of side effects of medicinal products. [39] 

In addition to the large area of logistics, artificial intelligence is also increasingly being used in 
production at the “Process control level” and “Field level” to optimise processes sustainably. The 
area of process control and monitoring, in particular, is being expanded by intelligent cluster 
algorithms to ensure that the increasing demands of the market and continued economic 
production are satisfied. In connection with process monitoring, the maintenance and continuous 
improvement of safety play an overriding role concerning both the process and the plant. When 
converting modular plants, for example, artificial intelligence can take over time-consuming 
decision-making processes regarding plant safety and thus prevent long downtimes.  

But not only are existing processes being further optimised with the help of artificial intelligence, 
but chemists are also being increasingly supported in research. The approach of using artificial 
intelligence to plan synthesis routes is already 60 years old. The problem, however, is that it is not 
enough to give the computer a large number of rules, because the complexity of chemistry cannot 
be logically grasped with simple rules. Especially retrosynthesis as a standard method for the 
production of chemical compounds is defined by an enormous complexity. For the production of a 
target molecule starting from its basic materials, there are numerous variants for each synthesis 
step that need to be compared and evaluated. Besides, for the efficient use of artificial intelligence, 
the available data must always be up to date, which is why the software has to independently learn 
the rules and applications from the constantly growing literature via deep neural networks. A 
research team led by the organic chemist Segler at the University of Münster has succeeded in 
achieving results that are 30 times faster with the help of artificial intelligence in retrosynthesis. [41] 

Other notable examples of the use of artificial intelligence in the chemical and pharmaceutical 
industry include the “supercomputer” Quriosity from BASF in the area of research and the use of 
predictive maintenance in the area of maintenance and repair from Evonik Industries. Even if the 
areas of application and thus the requirements for the programs differ, it is clear in all areas that 
artificial intelligence does not replace experts but supports them concerning the collection and 
structuring of data to make sustainable decisions. [39] 

The core aspects of AI and BD in the chemical industry are summarised in Table 2. 

Table 2 – Summary of AI and BD in the chemical industry 

Business Level AI/BD technologies 

Enterprise management level   AI-based forecast  
 Collaborative data exchange along the supply chain 

Production management level  Automated loading point management 
 AI-based process monitoring (pattern recognition) 

Process control level  Predictive maintenance 
 Real-time based product tracking 

Field level  Sensor-based quality monitoring (including R&D) 

5.6.1 Focus on the Bio-Based Industry 

The chemical industry, and in particular the green chemistry, is currently converging with industrial 
biotechnology [42] [43]. The connection between the chemical sectors and the bio-based one calls 
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for a dedicated focus. Data show that the overall EU bio-based production accounts for about 4.7 
Mt of bio-based chemicals per year, representing 3% of the total market for the 10 key chemical 
products. [44]. The EC assessed that the bio-based products and biofuels representing about € 57 
B in annual revenue and 300 K jobs, would have risen to 12.3% of all chemical sales in 2015 and 
22% by 2020, with a compounded annual growth rate of about 20%. [45] The Bio-based Industry 
Joint Undertaking Strategic Research and Innovation Agenda [46] set as a goal the development 
of new biorefining technologies that would enable the sustainable transformation of natural 
resources in bio-based products and materials. 

Indeed, among the objectives of the EU bio-based industry for 2030 there is the enabling of 30% 
of the chemical production becoming bio-based, pursuing the goal of a more sustainable industry 
and the reduction of the GHG emissions to which the Chemical industry heavily contributes. Indeed, 
the proportion of industry that could become bio-based grows to over 50% when considering high 
added value chemicals and polymers [44].  

The enhancement of the bio-based industrial production is tightly linked to the scale-up of 
manufacturing capabilities, diversification of processing technologies and cost reduction, i.e. the 
optimization of efficient biorefineries. Developing efficient biorefineries comparable to petroleum 
refineries allows the production not only of biobased product competitive with their fossil-based 
equivalents, but also the possibility of generating products currently manufactured by petroleum 
refineries, but also additional ones. [47]  

While the bio-based industry can be considered under the chemical sector, as for processes and 
industry characteristics one specific phase in the upstream of the value chains assumes relevance: 
the supply section and the pre-treatment processes applied to convert raw material into biobased 
products. Indeed, those will apply a combination of different technologies based on thermal, 
mechanical, chemical, and biological processes. The biobased products in general result from 
secondary materials, however dedicated crops also exist for bio-chemicals or bio-fuel production. 
This implies that the feedstocks used as raw material for by-products must presents some specific 
requirements such as not only conveniency of prices, but also good quality, and reliable quantity 
and availability. In addition, specific individual skills and training are required for an effective 
product of biorefining. The main challenges arising for biobased products relate to the cost of the 
biobased raw material, and the development of new and/or better low-cost processing technologies 
converting raw material into biobased products. 

Research showed that digital technologies can contribute to future R&D improvements in the 
bioprocesses, and particularly through the development of [47]: 

 new process monitoring methodologies, thanks to microfabricated discrete sensors, 
real-time monitoring and digital imaging;  

 new process control concepts, applying expert systems, artificial intelligence, neural 
networks, and principal component analysis.  

Against the lack of data traditionally experienced in the biology experimentation, the XXI century 
witnessed astonishing technological improvements that made great quantity of data available in 
biology, generating the need for specific tools that could facilitate the analysis and interpretation of 
those data. In this context, predictive design and rapid evaluation are at the core of the bio-based 
approaches, along with the assembly of new materials through laboratory automation, high-
throughput (HT) characterisation and post-production processing.  
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More in general, there are several processes in which the digital technologies can add value and 
improve the bio-based industry in particular, and in general any chemical or process industry 
(Figure 10). Some examples are given in [48]: 

- Smart Design for extended products’ life and improved recyclability  
- Monitoring Systems based on automatic data flows for trend assessing, renewed 

production processes, emission calculation 
- Stock exchange platforms for bio-based materials, digital marketplaces to increase bio-

based materials availability, volumes, and improve quality assessment 
- Advanced just-in-time delivery processes based on IoT or M2M communication for 

optimised delivery 
- Decentralised production through 3D printing, enabling smaller modular manufacturing 

facilities, using Small Scale Intelligent Manufacturing Systems (SIIMS) 
- Digital chains to connect supply chains across sectors based on horizontal and vertical 

integration through digital networks  
- Consumer-centric and improved end-of-life usage through ingredient tracking 
- Advanced computer-aided growth processes for growth processes’ steering and tracking 

(e.g. input factors such as fertilizers, light, water) 
- Augmented Reality (AR) training tools in human-machine collaboration 
- Smart manufacturing enabling automatic control and steering of biochemical processes 

and communication across production entities 

 

 

Figure 10 - Examples of digital accelerators for a circular and sustainable bioeconomy. Source [48] 
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5.7 CERAMICS SECTOR 

The term ceramics comprises a much wider range of materials, including metallic oxides, nitrides 
and carbides. These materials are used in application areas from household items to high-
performance tools for industrial use. In addition to their great hardness, ceramics are also resistant 
to thermal and chemical influence, making them highly suitable for applications where the product 
is subjected to high mechanical or thermal stress. 

Ceramic forming methods include throwing, slip casting, tape-casting, freeze-casting, injection 
molding, dry pressing, hot isostatic pressing (HIP) and others. Methods for forming ceramic 
powders into complex shapes are desirable in many areas of technology. Such methods are 
required for producing advanced, high-temperature structural parts such as heat engine 
components and turbines. 

Ceramic industry is divided in nine sub-sectors according to A.SPIRE: floor and wall tiles, bricks 
and roof tiles, refractories, technical ceramics, table and ornamental ware, sanitary ware, 
expanded clay, clay pipes and porcelain enamel. Other classifications also distinguish abrasives. 
Depending on the nature of the ceramic ware, typical process steps have to be followed in the 
target of specific size, shape and properties, as illustrated in Figure 11. 

• Raw material collection, crushing and grinding (more of a manual method) 
• Mixing (dry and wet) 
• Forming (giving a specific shape, either manually or with a wooden mold) 
• Surface coating with some design 
• Drying to reduce the moisture 
• Firing (to harden the shape and make it unbreakable) 
• Machining and finishing (as if required) 

 

Figure 11 - Common ceramic ware processing protocol [49] 

According to the processes in the ceramics manufacturing, different processes, activities and 
indicators have been identified to determine critical steps and improvement opportunities. 

Three main problems may occur during the manufacturing: deformation, cracking and foaming. 
The deformation of the product is the most common and serious defect in the ceramic industry, 
such as the diameter of the cylinder is not round, and the geometric shape has irregular changes. 
The main reasons are improper kiln-drying method, quick temperature changes and excessively 
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high firing temperatures. The reason for cracks on the product surface is that the preheating 
temperature rises too fast and then the cooling process occurs immediately, resulting in uneven 
shrinkage inside and outside the product. The bubbles on the product surface is mainly caused by 
the insufficient oxidation of the decomposition in the porcelain tire and the glaze as well as the 
content of sulphate and organic impurities in the billet glaze. These three problems comprise the 
principal quality control issues about ceramics. 

Ceramic industry is energy intensive, namely due to the drying and firing processes, which involve 
firing temperatures between 800 and 2000 ºC. The manufacture of ceramic products is a complex 
interaction of raw-materials, technological processes, people, and economic investments. It 
includes the transport and storage of raw materials, ancillary materials and additives, preparation 
of raw materials, shaping, drying, surface treatment, firing, and subsequent treatment [50]. 
Complexity of the production process is diverse and also the market requirements are different for 
each ceramic industry sector. The main problematics found in the ceramic industry include 
according to the production process are: 

 The company type of production system in force determines the flow of materials and semi-

finished products during production orders. The production system is determined by the firing 

process taking place in roller or tunnel kilns. The continuous production system forces the 

planners responsible for production to the appropriate prior preparation of the batch.  

 Labor market – employee market causes problems with employing people possessing 

appropriate qualifications. The skills that people working in ceramic plants possess, are an 

essential element of the company's operations.  

 The assortment and the degree of modernization of the company. Producers of ceramic 

products compete with one another, offering their clients a modern, often changing design 

(changes in design and shape introduced several times a year). A wide and dynamically 

changing assortment in relation to a limited number of machines and devices results in a 

situation in which managers must carry out production based on inventory. 

 Ceramic factories producing ceramic fancy goods or building ceramics are exposed to 

fluctuations in the sale of products due to seasonality. The barrier associated with the 

continuous maintenance of production affects the storage of inventory. Losses caused by 

overproduction or shortage of products are an obstacle in eliminating wastage. 

Nowadays the ceramics industry is undergoing one of the most important changes in recent history. 
Ceramic manufacturing processes are highly automated from the point of view of product handling 
and material processing. However, one of the most common problems in the traditional ceramic 
sector is that the machines and equipment responsible for each manufacturing phase are not 
interconnected, therefore limiting the overall efficiency of equipment (OEE).  

Align with this need, digital transformation based on AI&BD technologies allows to streamline 

decision making and connect all elements of the production chain more efficiently. The 

digitalization process in the ceramic industry faces different barriers 
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Table 3 - Main processes, activities and Key Performance Indicators (KPIs) in ceramics industry. Source:  [49] and [51] 

 

 

PROCESS ACTIVITIES INDICATORS  

Raw materials Transport Transport within the plant 

Storage  Storage conditions (level indicators, overload 
valves and filters or gas displacement units) 

Stock control 

Materials 
preparation 

First size reduction Size control 

Preliminary 
homogenisation 

Homogenisation degree 

Weathering/Drying Water content 

Crushing/grinding Size control 

Classification Homogenisation degree 

Component 
mixing (dry and 
wet) 

Proportioning of the mix 
components 

Automated (computer control of the feeder 
mechanisms) 

Mixing Degree of mixing (mixing time, intensity and 
sequence) 

Shaping/forming 
of ware 

Pressing/extrusion/ 
moulding/casting 

Quality control 

Drying Drying optimization Optimization (speed, thermal 
efficiency and low wastage) 

Drying process Control (heating rates, air circulation, 
temperature and humidity) 

Surface 
treatment and 
decoration 

Texturing and facing Process control 

Decorating techniques Design, ink application 

Firing Firing control Firing conditions (temperature, time) 

Final material control Final properties control (mechanical strength, 
abrasion resistance, dimensional stability, 
resistance to water and chemicals, and fire 
resistance) 

Machining and 
finishing 

Machining (grinding, 
drilling, sawing, 
polishing) 

Final shape or dimensional tolerance 

Additives/final 
assembling 

Quality control 

Sorting, 
packaging and 
storage 

Process according to 
the product 

Quality control, Stock control 
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. 

Figure 12 - Identification of barriers in refining processes in the ceramic industry [52] 

Machine learning algorithms are already being used in ceramic industry, especially in quality 
control processes. With various algorithms, it is possible to predict the behaviour of the material 
under extreme temperature conditions and to detect anomalies and deficiencies in the tiles. The 
studies being carried out with the help of Artificial Intelligence (AI) seek to predict the anomalous 
behaviour of materials during the manufacturing process, making it possible to control and use the 
components that meet better resistance conditions than those currently being manufactured. By 
recognizing incorrect patterns, they are able to detect anomalies in products early, reducing 
shrinkage and increasing profitability. Nexusintegra already found companies that are working with 
this technology and are using it in this line or in others. They are, above all, companies in the 
ceramic, porcelain stoneware and flooring sectors [53]. 

Recent developments in AI&BD include real time monitoring, process optimization and 
programming, design improvement, quality control. 

 Color Management software which allows ink savings and a quality improved designs thanks 

to mathematical algorithms (Digit-S) 

 Data collection generated by advanced sensors, real time monitoring and remote monitoring 

of smart moulds for ceramics, optimization of warehouse management and freight transfer 

flows (DataRiver) 

 Automated optical inspection designed to automatically find flaws in ceramic tiles before mass 

production (defect detection of the tiles to determine acceptance and rejection conditions 

(RSIP Vision) 

 Real-time monitoring of production and sales performance 

There is a growing interest in Big Data implementation among ceramic companies in their 
management and decision-making processes. Research results show that the use of new 
information technology in ceramic companies is already in its infancy and is gradually growing. 
Today, special focus is on the process of production, sales, product development and maintaining 
and improving business turnover. [54] 
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The following table shows an identification of sensor to get the insights through Big Data Analytics: 

Table 4 - Identification of sensor to get the insights through Big Data Analytics in ceramic industry [55]. 

PROCESS SENSOR DESCRIPTION 

Firing/flourishing Thermocouple 
sensor 

Used to monitor the temperature 

Firing/flourishing Proximity sensor Used to measure and control the rotational 
speed 

Sorting/Packages 
Stage 

Planner sensot Used to check the surface planarity 

Sorting/Packages 
Stage 

Linear sensor Linear sensor used to check the linearity of 
the ceramic biscuits 

5.8 CEMENT SECTOR 

In [62], the key steps of the cement manufacturing process were defined as: (i) mining, (ii) crushing, 
stacking, and reclaiming of raw materials, (iii) raw meal drying, grinding, and homogenization, (iv) 
Clinkerization, (v) cement grinding and storage and (vi) packing. Furthermore, [57] states that 
cement manufacturing is a complex process starting with mining and then grinding raw materials 
such as limestone and clay to a fine powder, which is then heated to a temperature up to 1450 °C 
in a cement kiln. In [58], on the other hand, the manufacture of (Portland) cement is defined as 
having four main stages:  (i) crushing and grinding the raw materials, (ii) blending the materials in 
the correct proportions, (iii) burning the prepared mix in a kiln, and (iv) grinding the burned product, 
known as “clinker,” together with gypsum (which controls the setting time of the cement).  

Figure 13 - McKinsey report summary of cement manufacturing processes. Source: 

https://www.mckinsey.com/industries/chemicals/our-insights/laying-the-foundation-for-zero-carbon-cement 
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A study by Ernst and Young [59] focuses on the aspect of sustainability and ecological aspects. It 
is said that cement is an essential component for the construction industry, but it also is a key 
prejudicial element for climate change, being responsible for 6 to 9% of global CO2 emissions. 
Due to new international agreements to minimize climate change, the cement industry is facing 
increasing pressure,  and are already starting to address relevant issues. Example measures are, 
for example: to improve thermal energy efficiency and fuel switching, reduce the clinker-to-cement 
ratio, and the use of innovative technologies.  

A McKinsey report [60] 
gives a vision for the 
cement plant of the 
future, leveraging 
digitization and taking on 
board sustainability 
measures. The report 
goes on to indicate 
desirable objectives 
such as lower operating 
costs and higher asset 
value through higher 
energy efficiency, yield, 
and throughput. Also, the 
use of better targeted 
and effective 
maintenance to lengthen 
the lifetime of equipment. 
The environmental 
footprint should be 
minimized, thus 
facilitating its license to 
operate across locations and jurisdictions. In order to meet customer demand, a plant needs to 
dynamically adjust production and logistics according to real-time customer data, which opens 
possibilities for data mining and big data processing to synthesize and provide decision support 
information to managers who may be at remote locations. The report indicates that the cement 
industry is somewhat behind the curve in the adoption of digitalization, and ranks low in the ranking 
of Industry 4.0 leaders. However, the cement industry is now faced with greater regulations and 
less demand hence there is a need to leverage digitalization in order to keep a competitive edge. 

The paper by Rodrigues and Joekes [61], also focuses on the environmental challenges faced by 
the cement industry. It is cited that concrete production (in 2009) was over 10 billion tons, including 
concrete and mortar. Cement is a key component for building and infrastructure and therefore has 
a special economic and social relevance. However, the industry is also one of the biggest polluters. 
According to the authors, cement production releases approx. 6% of all carbon dioxide generated 
by human activity, and accounts for about 4% of global warming. Possible areas of leverage of 
technology to mitigate this problem can be found, for example, in cement chemistry (sustainability), 
alternative materials and material recycling. 

The next two references focus more specifically how AI and BD can be used in the cement industry. 
Firstly, [62] focuses on the high energy use in cement production, citing the consumption of 349 
trillion thermal units of energy in the year 2019. Hence, cement plants are looking for innovative 
ways to reduce energy consumption and costs.  

Figure 14 - McKinsey report summary of margin gains due to digitalization and 
sustainability. 
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The argument is made for artificial intelligence for cement plants, citing the following possible 
application areas: 

 Failure prediction (operative and corrective failures); 

 Production processes optimization; 

 Predictive maintenance; 

 Remote operation; and 

 Product design and quality; smart supply chain. 

An example is given of how a global cement company has taken on board AI solutions. Cemex, a 
major building material company contracted a specialist  AI  company (Petuum) to implement the 
industrial AI products. The first product (Industrial AI Autopilot) claims to use Machine Learning 
and Deep Learning support complex process control to obtain a better optimization (superior to a 
human operator). The authors state the system uses deep learning neural networks trained with 
two years of plant information, including data from cement processes with associated timestamps. 

The next AI product focuses on “Modeling for decision making”, which models the variable inter-
relationships over time. The historical operating models provide support for the current evaluation 
and future prediction of process performance. 

Following on from the previous product, AI-based models are used to provide optimal settings, 
which are recommended for the plant. Plant data is analysed to optimize and predict process 
behaviour. For example, the AI system will recommend optimum settings for control variables in 
real-time, which are then validated by human operators before applying them. 

The software “back-end” of the AI Autopilot product integrates historical process data via a data 
infrastructure, processing historical and streaming data, used to make the predictions. 

Finally, [63] gives some more examples of how the Peetum software described in [68] is applied 
to specific steps and processes in the cement production process. It is said that the AI model used 
for cement uses smart factory principles to optimises the whole manufacturing process. This 
includes AI optimization for the cooler, ball mill, vertical mill, and the complete pyro process which 
includes pre-heater, cooler, and kiln. The AI model learns the dynamics of each of the industrial 
assets (cooler, ball mill, vertical mill, pre-heater, and kiln) and processes from historical sensor 
data, creating prescriptions by searching for the optimal values of critical control parameters, and 
closing the loop by sending prescriptions back to assets and processes to be activated. 
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6. CONCLUSIONS 
 

One of the objectives of this document has been first to obtain a vision of the current landscape of 
the key SPIRE industry processes on a sector-by-sector basis, highlighting issues and 
bottlenecks, and identifying potential key application areas for AI and BD technologies. This 
has been detailed in Section 5. 

As a complement to this first industrial analysis, a list of key industrial stakeholders will be identified 
through a focused analysis of the stakeholders showing direct connection to the consortium 
companies and other relevant actors in the EU scenario. 

As a second objective, we have captured feedback and information from stakeholders, and of real 
current projects from the 1st AI-CUBE online Industrial Workshop, which has been summarized in 
Section 8.1 and detailed in Annex 8.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 – AI and BD literature references(EU + International) found per process: 
2016-2020 (D1.1) 

Figure 16 – Number of European projects involving AI vs process macro-area (from 
deliverable D1.1) 
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This Deliverable adds to the previous results of the literature and project analysis carried out, where 
some first indications of (possible) AI and BD focus, in the different process industries may lie. In 
D1.1. this was visualized through the graphs in Fig. 15 (EU +  International)  

A similar picture emerged from an analysis of funded European projects, confirming a focus on 
process control and optimization, product design, predictive maintenance and supply chain 
management (Fig. 16).  The information for Fig. 16 was obtained by searching European public 
domain databases. 

Clearly, each SPIRE sector has its own challenges, where AI and BD can add value, and as a 
result differences in AI &BD focus as well as maturity start emerging, as sustained in the current 
Deliverable. 

6.1 MAPPING TO THE “CUBE”: TECHNOLOGIES VS PROCESSES AND 
SECTORS 

To summarize the sector-by-sector review of the key processes given in Section 5, it has 
emerged that some sectors are leaders in digitalization, such as the water sector, chemicals and 
engineering, whereas other tend to lag behind, such as  the ceramics and cement sectors. 
However, many sectors have similar problems, such as high energy usage and complex 
process behavior, as in the steel, minerals, non-ferrous metals, water, ceramics and cement 
industries.  This issue is a good candidate for optimization and improved process control through 
AI and BD. 

Another key issue in many highly industrial environments is predictive maintenance in order to 
avoid failure of major physical components due to “wear and tear” of the production processes. 
Also, quality control and the prevention of situations which arise in defects which is particularly 
important in the ceramics industry. 

Within the chemical industry, the bio-based sub-sector often involves new experimental 
processes which need to be optimized and controlled efficiently, as well as scale-up of processes 
and consumer centric production. 3D printing and intelligent stock control have also been 
suggested as potentially adding value to the bio-based industries. 

The engineering sector on the other hand is transversal and is applied to many other sectors 
such as chemicals, where it often leads in introducing digitalization to these sectors. For example, 
digital twin simulations, monitoring of critical infrastructures, workplace security and healthcare. 

On the other hand, the non-ferrous metals, steel and cement industries suffers from high 
throughput volumes and extreme processing conditions (such as temperature) and a complex 
chain of processing steps. The minerals industry has similar issues, including safety in the mining 
extraction process and high energy consumption. 

The water sector displays quite a variety of applications of new technology projects, and the key 
issues involve the main processes found in this sector which are the efficient treatment of waste 
water on the one hand, and the secure production of clean water for human use and consumption 
on the other. Both of these aspects present challenges due to varying real world conditions and 
the large scale of the infrastructures and installations involved. 

Regarding the adoption according to the company size, in general large companies tend to invest 
in AI faster at scale [37]. This is typical of digital adoption, in which, for instance, small and midsized 
businesses have typically lagged behind in their decision to invest in new technologies. However, 
it should also be taken into consideration that large companies may subcontract digitalization and 
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specialized technology work to smaller third-party companies/consultants which are specialized in, 
for example, the deployment of AI/BD technologies in specific industries. 

Table 5 shows a summary of the identified cases from Section 5, the workshop and the stakeholder 
feedback to date. It shows that in terms of processes, “(Model predictive) process control and 
optimization” is the most frequent in all sectors, whereas “Market trends and open innovation” does 
not appear at all. Hence the latter process represents an opportunity for all process sectors to apply 
AI and BD. For example, the cement sector depends on the demand from the construction industry 
which in term depends on public and private spending in housing, infrastructures, etc., as well as 
new trends in building materials, safety requirements and legislation. The interaction of these 
factors and trends have a complexity where AI algorithms can be used to help with forward 
planning. 

We recall from Deliverable 1.1, the exercise to build a taxonomy and common terminology of 
technologies for artificial intelligence and big data. To recap, AI was classified into three macro 
areas, “perception and communication” (Data understanding and characterization, Natural 
language processing, Object and spatial recognition, Machine learning); “cognition and 
reasoning” (Intelligent planning, Expert systems, Case based reasoning) and 
“transversal/integration/interaction” (Intelligent agents, Cyber-physical systems). 

Likewise, Big Data was classified into five macro-areas: data processing, Computing and 
storage infrastructure, Data protection, Data visualization and Data management. 

With reference to Table 5, in terms of technologies, it can be seen that “Machine learning” and 
“data understanding and characterization” are the most frequent for all sectors and processes. 
These are followed by “Intelligent planning” and “Cyber-physical systems”. Least used 
technologies are “intelligent agents and natural language processing”. 

With reference to Table 5, we can also mention the aspect of whether there are technologies that 
are sector-specific (or more present in certain sectors) and which ones are general to all sectors. 
It can be seen that “Machine learning” appears in all sectors, whereas “data understanding and 
characterization” appears in six sectors (water, minerals, engineering, chemicals, ceramics and 
cement), but not in (steel, non-ferrous). It would seem logical that “data understanding and 
characterization” would also be relevant to the last two sectors, but the work is not necessarily 
published in the public domain and/or is due to the limitations of the information retrieval (search 
repositories and keywords). “Cyber-physical systems” also appears in all sectors but one 
(ceramics). At the other extreme, “object and spatial recognition” is the technology which appears 
in the least sectors (only engineering), as well as “case based reasoning” (only non ferrous). This 
may be again an issue relating to information retrieval limitations (keywords). In general, it could 
be said that all the given technologies are applicable to any of the eight process sectors, but are 
more present (or identifiable) in a subset of sectors. 

In terms of needs and challenges on a sector by sector basis, this is more difficult to evaluate from 
“state of the art” literature surveys, and indeed will be a recurrent theme throughout the project 
where surveys and live stakeholder  meetings will provide valuable input. It can be said that two 
general challenges (though not the only ones, the specific challenges are detailed in Table 5) facing 
process industries in the coming decades will be (i) energy consumption and (ii) transition to a 
green economy, which are also inter-related. Artificial intelligence, through data driven modeling, 
simulation, digital twins and smart sensors, among other technologies, can play a key part in 
optimizing energy consumption and indeed making possible new paradigms for industrial 
processes. Energy consumption is especially critical in sectors such as steel, cement, chemicals, 
ceramics. On the second point, transition to a green economy for most sectors probably implies 
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changes in materials used and processes, which requires re-calibration and definition of many 
systems, and careful evaluation of cost/benefit. Sectors particularly affected by green transition 
would be chemicals, minerals,  cement, ceramics, where alternative materials could imply major 
changes in processing technology. Artificial intelligence and big data can play a key part in 
supporting this change, by sensor data capture and exploitation (e.g. smart sensors), which will be 
a challenge in more “traditional” environments, such as cement and ceramics. However, it would 
be wrong to generalize only on a sector, and ability/willingness to introduce and utilize new 
technologies can, with a sector such as ceramics, vary on a factory to factory basis, as well as in 
different countries within the European Union (e.g. stronger players such as Germany/France vs 
developing countries which have more recently incorporated in the EU, such as Poland, Hungary, 
Lithuania, Slovakia. Indeed it is relevant to mention here that the now 27 EU countries do not 
represent a homogenous mix, in terms of degree of industrial development, with 8 countries (mainly 
central and eastern European) joining the EU just since 2006. 

Hence, these finding will be used as an input to Deliverable 1.3 to further develop and establish 
the “cube” dimensions.  

Table 5 – Summary by (cube) sectors and processes, issues and potential AI/BD applications 

Sector Process Needs/Challenges Corresponding 
AI/BD 
technologies 

Water (Model predictive) 
process control and 
optimization 

Predictive 
maintenance 

Research and 
innovation 
management, 
planning and design 

Needs: waste water 
processing, clean water 
processing.  
Challenges: complex 
processing chain, large 
processing volumes, yield. 

Machine learning, 
Data understanding 
and 
characterization, 
Expert systems, 
Cyber-physical 
systems. 

Steel (Model predictive) 
process control and 
optimization 

Supply Chain 
Management 

Needs: efficient furnace 
operation and smelting.  
Challenges: High energy 
consumption, risk to humans, 
quality control, logistics, 
Value Chain. 

Machine learning, 
Cyber-physical 
systems, Intelligent 
planning. 

Minerals (Model predictive) 
process control and 
optimization 

Predictive 
maintenance 

Needs: efficient milling of raw 
material, mining/extraction, 
scheduling/planning, security, 
automation, remote 
monitoring. 
Challenges: high energy 
consumption, security and 
human safety,  

Machine learning, 
Data understanding 
and 
characterization, 
Intelligent planning, 
Cyber-physical 
systems (SLAM Self 
Driving Vehicles) 

Non-ferrous 
metals 

(Model predictive) 
process control and 
optimization 

Predictive 
maintenance 

Needs: furnace, smelting, 
scrap quality control, 
logistics.  
Challenges: high energy 
consumption, risk to humans,  

Machine learning, 
case based 
reasoning, Cyber-
physical systems 
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Engineering (Model predictive) 
process control and 
optimization 

Predictive 
maintenance 

Supply Chain 
Management 

Needs: quality assurance, 
predictive maintenance, 
sensor data capture. 
Challenges: fault detection, 
data quality. 

Machine learning, 
Data understanding 
and 
characterization, 
Cyber-physical 
systems, Object and 
spatial recognition, 
Intelligent planning. 

Chemicals Supply chain 
management 
(re)configuring and 
scheduling 

(Model predictive) 
process control and 
optimization 

Research and 
innovation 
management, 
planning and design 

Supply Chain 
Management 

Needs: optimum conversion 
of materials. reliability, 
production planning, 
continuous sensor-based 
monitoring 
process control 
logistics, goods shipments 
tracking. 
Challenges: waste 
avoidance, process 
complexity. 

Machine learning, 
Data understanding 
and 
characterization, 
Intelligent planning, 
Expert systems, 
Cyber-physical 
systems. 

Ceramics Product 
customization/design 

Supply chain 
management 
(re)configuring and 
scheduling 

Model predictive) 
process control and 
optimization 

Research and 
innovation 
management, 
planning and design 

Needs: optimum raw material 
processing, firing, finishing.  
Challenges: high energy 
consumption, reduction of 
defects (cracking/foaming) 

Machine learning, 
Data understanding 
and 
characterization, 
Intelligent planning. 

Cement Predictive 
maintenance 

(Model predictive) 
process control and 
optimization 

Product design 

Research and 
innovation 
management, 
planning and design 

Supply chain 
management 

Needs: optimization of kiln, 
firing, material processing, 
predictive maintenance, 
predict process behavior, 
supply chain, remote 
operation. 
 Challenges: high energy 
consumption,  

Machine learning, 
Data understanding 
and 
characterization, 
Intelligent planning, 
Cyber-physical 
systems. 
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6.2 SUMMARY 1ST AI-CUBE INDUSTRIAL STAKEHOLDER WORKSHOP 

The webinar, virtually hosted by IRIS, took place on February 2nd, 2021, and brought together 

representatives from SPIRE2030, Mabxience, Aqualia, Fraunhofer IPT and Universitat Politecnica 

de Catalunya which shared their experiences, vision, objectives, and challenges faced in the 

journey towards the process industry of the future, while presenting case studies related to the 

involvement of the AI and BD technologies in the SPIRE 2030 industries. Refer to Annex 9.1 for 

more details. 

To summarize the use-cases presented in the workshop (detailed in Annex 8.1), the five 
presentations covered the chemicals, engineering, water and minerals sectors. The 
chemicals/engineering use case presentations highlight the challenges for data capture from in-
line sensors and subsequent data preparation, formatting and processing in order to guarantee a 
quality input to the data modeling stage. Also, the need for good metrics in order to measure the 
results and compare with baselines in order to evaluate the improvement with respect to current 
methods. Also, the data scientist expert know-how is key for choosing the most adequate 
algorithms for a given problem and type of data. Deployment is a key issue for which a clear idea 
is necessary from the beginning, in order to make real use of the results in the production 
environment. Another key aspect is using appropriate techniques and pre-processing for treating 
time series data and sequences of processes where time is a critical factor. 

The water sector use case presentations highlighted again the key aspect of having the right 
sensors in place to capture the right data, have clear objectives for the data modeling and decision 
support in collaboration with the plant engineers. Also, the importance of combining the data driven 
modeling with "a priori" background information about the industrial domain, in the form of human 
expert defined rules as well as key documentation regarding procedures and key relevant 
knowledge. 

Finally, in the minerals/mining sector, the identification of energy consumption was a key aspect 
to study, where a small reduction can have a large positive effect due to the high volumes involved. 
The difficulty of conducting experiments with a wide range for control parameters was identified 
which is often limited by physical restrictions of the process itself, such as rotation speed of the 
grinding mill and the throughput rate of the material. 

Several of the issues mentioned in the case studies were similar, such as using the right sensors 
based on use-case and data-analytics strategy, capturing the right data, need of combining data 
driven approaches with relevant “a priori” background information, data quality, among others. 

The workshop material contributes to the overall preliminary conclusion/input for further to-be-
analysed challenges for AI & BD deployment in the process industries at large, i.e. to be taken into 
consideration in the next analysis work of AI-CUBE. 

6.3 OVERALL SUMMARY AND STAKEHOLDER IDENTIFICATION 

Table 6 contains an initial stakeholder/key player list obtained from different sources: (i) Information 
search by sector for Section 5 (11 organizations), (ii) Workshop invited speakers (4 contacts, 
coloured light brown), (iii) feedback from survey questionnaire (to present date, 6 contacts, 
coloured light grey). 

Also, a database search by PNO, resulted in a list of 200 potential stakeholders. From this list, the 
following are a sample: ABB Group, ArcelorMittal, Dow Chemical Company (DowDuPont), German 

https://www.ai-cube.eu/news/iris-hosted-the-first-ai-cube-industrial-workshop/
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Research Center for Artificial Intelligence – DFKI, Hydro Aluminium Deutschland GmbH, IBM, 
Mondragon Sistemas Group, Rio Tinto Group, Royal Dutch Shell, SAP AG, SIEMENS AG, 
Swedish Hydro Solutions AB, Swiss Steel, University of Cambridge, University of Skövde, 
University of Twente and WORLDSENSING SL. 

More extensive details are also given in Deliverable 2.1 of the stakeholder engagement plan, which 
is a confidential document. 

 

Table 6 – Initial stakeholder list 

Name Sector Comments 

Mabxience Engineering / 
Chemicals 

Invited speaker at workshop. Predictive 
maintenance. Engineering company, installations 
maintenance. 

Aqualia/FCC Water Invited speaker at workshop. Optimum process 
control 

Fraunhofer IPT Engineering Invited speaker at workshop. Customized 
process control. 

Universitat Politecnica de 
Catalunya (UPC) 

Water Invited speaker at workshop. Optimum process 
control. 

Lubelska University of 
Technology     

Power Replied positively to post workshop survey and 
indicated would like to become a stakeholder 

Lortek Engineering Replied positively to post workshop survey and 
indicated would like to become a stakeholder 

Kando.eco Water Replied positively to post workshop survey and 
indicated would like to become a stakeholder 

Idener.es Engineering / 
Chemicals 

Replied positively to post workshop survey and 
indicated would like to become a stakeholder 

Berlin Centre of 
Competence for Water 
(kompetenz-wasser.de) 

Water Replied to post workshop survey and indicated 
they might like to become a stakeholder 

De Watergroep is the 
largest drinking water 
company in Flanders 
(dewatergroep.be) 

Water Replied to post workshop survey and indicated 
they might like to become a stakeholder 

Merck Chemicals Has done important studies on AI/BD 
applications such as “intelligent supply chains” 

BASF Chemicals The “supercomputer” Quriosity used for research 
and predictive maintenance in the area of 
maintenance and repair from Evonik Industries. 

University of Münster Chemicals Organic chemist Segler at the University of 
Münster has succeeded in achieving results that 
are 30 times faster with the help of artificial 
intelligence in retrosynthesis 

CEMEX /Petuum Cement A specialist  AI  company (Petuum) contracted by 
CEMEX. 

International Water 
Association 

Water Kalanithy Vairavamoorthy, Executive Director 
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European Steel 
Technology Platform 

Steel Ref. [19] 

MOgroup process 
services. 
https://www.mogroup.com 

Minerals Major European service company dedicated to 
the mining industry Ref. [23] 

LKAB Minerals Major mining company 

Outotec Minerals Mining industry consultants 

RSIP Vision Ceramics Technology company with automated optical 
inspection system designed to automatically find 
flaws in ceramic tiles before mass production 
(defect detection of the tiles to determine 
acceptance and rejection conditions 

DataRiver Ceramics Technology company with system for data 
collection generated by advanced sensors, real 
time monitoring and remote monitoring of smart 
moulds for ceramics, optimization of warehouse 
management and freight transfer flows 

Following the work carried out in this deliverable D1.2, including pro-active further engagement 
with identified additional stakeholders, the next steps envisaged are as follows: (a) development 
work on Task 1.3 will consolidate the knowledge obtained from Tasks 1.1 and 1.2 and (b) set the 
stage for the WP2 tasks; (c) contacts with stakeholders will be consolidated in order to develop a 
cohesive working group and network. 
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8. ANNEXES  
 

8.1 ANNEX – 1ST AI-CUBE ONLINE INDUSTRIAL WORKSHOP - 
PRESENTATIONS 

The following summarizes the material obtained from the 1st AI-CUBE online Industrial 

Workshop organized by the AI-CUBE project, and held on 2nd February 2021, with key invited 

speakers from different industries and real projects. Five real use cases were presented, two from 

the water sector, two from chemicals/engineering, and one from the minerals/mining sector, which 

are summarized in the following sections. 

The webinar, virtually hosted by IRIS, brought together representatives from SPIRE2030, 

Mabxience, Aqualia, Fraunhofer IPT and Universitat Politecnica de Catalunya which shared their 

experiences, vision, objectives, and challenges faced in the journey towards the process industry 

of the future, while presenting case studies related to the involvement of the AI and BD 

technologies in the SPIRE 2030 industries.  

The webinar commenced at 14h with an overview of the AI-CUBE project by PNO coordinator 

Chiara Eleonora De Marco, with special emphasis on the three “dimensions” (thus the cube) of the 

project analysis: sectors, processes and technologies, the 8 SPIRE process industry sectors 

considered, and the stakeholder involvement.  This was followed by a presentation by Mrs. Angels 

Orduña, Executive Director of SPIRE 2030, on the relevance of AI and Digital tools for the process 

industries in order to achieve the Processes4Planet Roadmap 2050.  

Next, five case studies were presented for different process sectors. Mr. Javier Rodriguez, 

Engineering and Maintenance Manager Mabxience (Spain) presented a case study of artificial 

intelligence with big data applied to condition based maintenance in a Water for Injection (WFI) 

plant. Next,  Mrs. Ledicia Pereira, Project Manager at the Innovation and Technology Department 

FCC Aqualia (Spain). presented the case study “Optimising Water Industry Processes Using 

Machine Learning:  Case Study at Lleida Wastewater Treatment Plant for optimising sludge 

management line”.  This was followed by the presentation of Mr. Maik Frye, Research Associate 

of Fraunhofer IPT (Germany) entitled “Machine learning based product quality prediction in profile 

extrusion processes”. Next, Prof. Karina Gibert of the Universitat Politecnica de Catalunya (Spain) 

presented a case study of “AI applied to a waste water treatment plant”, and finally Dr. David 

Nettleton of IRIS presented a case study of “Predictive modeling for heating control in a mining 

facility” on behalf of LKAB and Outotec who participated in the study.  

The presentations were followed by a question/answer session and discussion where the 

attendees could place their questions in the Teams app chat and the presenters could give their 

replies. Issues were raised such as the need for quality data (esp. from sensor data capture), the 

incorporation of expert human knowledge to support data driven models, and deployment. The 

workshop concluded at 1630h will thanks to all the participants and attendees. From initial 

feedback, several organizations have confirmed their interest in participating and becoming 

stakeholders of the project and an online survey questionnaire was made available to all attendees 

to obtain further feedback. 

https://www.ai-cube.eu/news/iris-hosted-the-first-ai-cube-industrial-workshop/
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8.1.1 Case study of Artificial Intelligence with Big Data applied to Condition Based Maintenance 
in a Water For Injection (WFI) Plant 

In the case of the chemicals/engineering sector, the first presentation by Mabxience was a case 

study of AI with BD applied to condition based maintenance of a water for injection (WFI) plan. The 

Engineering and Maintenance Manager first 

gave an overview of the WFI plant and the 

problem of predicting maintenance requirements 

to anticipate unexpected events/failures. The 

approach was to install a comprehensive sensor 

system in which temperature, pressure and 

conductivity were measured in strategic points of 

the water circuits. Data was captured over a four 

year period, together with alarm data and water 

quality. This data pool was then used to analyse 

trends and build predictive models on the 2018 

data, and then test on the 2020 data. It was 

found that the chosen 2020 events were 

predictable using models trained on the 2018 

data. A rule induction algorithm was used which 

has the advantage of “explaining” in terms of 

rules, the model functionality. Previously, neural 

networks (black box) had been used more 

generically (to identify anomalies). An AUC 

(Area Under Curve) metric was used to quantify the sensitivity of the predictive models in a 14 day 

time window before the maintenance events. There models were found to have a good sensitivity 

with respect to detecting the events a priori in the 14 day time window. An event would be, for 

example, a malfunctioning sensor or valve, or tube rupture. The results form the basis for a future 

“expert system” support system for the operations manager to anticipate unplanned maintenance 

events. 

Figure 17 - Chemical/Engineering sector: 3D 
representation of anomalies (red) and normal cases 
(blue) based on temperature and water conductivity 
sensor data 
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8.1.2 Machine Learning Applied to Optimize Water Treament Plant Processes 

The first water sector presentation by FCC/Aqualia dealt with optimizing industry processes 
using machine learning, at the Lleida wastewater treatment plant for optimising the wastewater 
treatment line. Two case studies were presented: (i) Enhancement of biological nutrient removal 
process with intelligent assisted control tools in full-scale wastewater treatment plant and (ii) 
Development of self-
controlled polyectrolyte 
system for sludge 
dewatering. 

In the first case, sensors 
captured information about 
chemical constituents, as 
well as flow-meters, energy 
meters and state of control 
elements. The previous 
input characteristics to the 
system were WWTP, non-
AC system, manual 
control; and the output characteristics included a low nutrient removal yield, lack of compliance 
with outflow requirements, high staff dependence and unwanted chemicals in dewatered sludge. 
With the new AI assisted system, the new inputs were an upgraded WWTP, and AC systems; the 
new outputs were a high nutrient removal yield, compliance with outflow requirements, automated 
control system, lower unwanted chemical presence in dewatered sludge and reduced chemical 
and energy consumption. 

In the second case, a circular control circuit was defined: sludge   centrate  control 

polyeletrolyte dose  sludge ... which effectively passed from a manual method to an automated 
one, achieving a decrease in polyelectrolyte consumption. 

Figure 18 - Chemical/Engineering sector: schema of the WFI plant 

Figure 19 - Lleida waste water treatment plant 
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Overall, a key aspect is implementing a smart metering and control loops for process optimisation, 
which will go towards a machine learning capability to produce predictive models. The inputs to 
the machine learning modelling are a dataset, an optimization metric and a set of constraints 
(time/cost). 

 

8.1.3 Machine Learning Based Product Quality Prediction in Profile Extrusion Processes 

The presentation corresponding to the engineering sector, presented by the Fraunhofer 
Institute for Production Technology (IPT), described a case study of machine learning based 
product quality prediction in profile extrusion processes. Different focuses were proposed for 
applying ML to production: process (design, management, optimizing of routing & scheduling, 
predictive process control); machines & assets (anomaly detection, predictive maintenance (PdM), 
self-learning machines); product (product-design). 

A key success factor presented was the "ML pipeline", which has as main steps (data integration, 
data preparation, modelling and deployment). The data integration phase includes use case 
selection and IT system analysis. The data preparation phase is crucial, as data quality depends 
on this, which includes pre-processing, "feature engineering" and data and process understanding. 
The modelling part includes algorithm selection, tuning of the algorithm control parameters, training 
and evaluation. The deployment part covers deployment design, testing, monitoring, retraining and 
certification. The use case covers a sequence of processes, ending in quality assurance. 

The objective is to predict the expected product quality at an early stage on the process-chain, 
aiming to minimize scrap, machine downtime and repair costs. The learning task deals with a  
classification problem, to distinguish products that are expected to be OK and products which are 
expected to fail. 

The data preparation commenced with a dataset of 194 attributes. After removing null attributes, 
non-changing values, attributes with a high number of missing values, and highly correlated 
attributes, this left a subset of 33 attributes. This was further separated into non-categorical data 
and categorical data. 

For the application of ML-models, two algorithms were tried: decision tree and random forest, which 
gave similar results, the former 91 % accuracy and the latter 95 % accuracy. 

In order to evaluate the results, different criteria were used: the performance was compared to the 
business objective, its return on investment, transparency, training time, model scalability, if the 
model was transferable to similar use-cases and if the process is still compliant to obtain 
certification. 

For deployment, a GUI allows a simulation to be run: first select the product, then the decision 
trees are trained to predict the quality of the product. When the simulation terminates it shows a 
screen with the product information, the prediction analysis and the features used. Also, the 
decision tree is shown on the screen so the user can see how the model has reached a given 
conclusion. 

In summary, a roadmap has been developed to achieve deployment of AI/ML in production, 
beginning with strategy, followed by choice of projects, use case creation, data preparation and 
quality assurance and culminating in ML based generation of knowledge. 
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8.1.4 AI Applied to a Waste Water Treatment Plant 

The second water sector presentation was presented by the UPC and dealt with AI applied to a 
waste water treatment plant. Data was obtained for 41 biochemical parameters (25 relevant), flows, 
solids, organic matter, pollutants, biomass of 396 daily means between 01/09 and 30/09. Prior 
expert knowledge was aggregated to this data. The case to study is decision making under 
abnormal plant operation. The objective is to re-establish normality as soon as possible to the 
plant. 

The waste water treatment plant has the 
following characteristics of  treatment 
(pre-treatment, primary and secondary 
treatment) and measurement points 
(entry, settler, bioreactor, exit). 

In the application, it was important to 
include prior expert knowledge 
acquisition (legal limits of pollutants) as 
a knowledge base of rules. The 
methodology was to perform clustering 
based on rules, then use the knowledge 
base to find the rule induced partitions, 
different classes and the residual. Next, 
hierarchical clustering was applied to 
the new dataset to determine the final 
classification, which is consistent with 
the prior knowledge. The classification 
(hierarchical tree) facilitates 
interpretability. 

The class interpretation uses multiple boxplots versus classes to identify outliers in order to  
characterize variables which have exclusive values for a given class. Then, for a fourth class, 
almost all the variables take few values. As an example, the expert opinion would then interpret for 
this class, that the input valves are closed, with minimum purged flow and system protecting is 
active, which corresponds to "storming days". 

For every stage of the process a tree is defined and for each tree decision support assigns a panel 
graph, a thermometer and traffic light panel (see Fig. 17). This provides a semantics based 
colouring, for example: biochemical oxygen=high (red), chemical oxygen demand=medium 
(ambar) and volatile suspended solids=low (green). 

For deployment of the decision support system, the following three steps were implemented: (i) 

measures of one day  (ii) use generated rules for finding corresponding class  (iii) apply the 
treatment/action associated to that class 

In conclusion, two key aspects were the support of prior domain knowledge/processes, and the 
incorporation of semantics using a thermometer for automatic interpretation with colour indicators. 

 

 

 

Figure 20 - Water sector decision support screen interface 
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8.1.5 AI Applied to Energy Optimization of a Milling Machine for Iron Ore Grinding 

In the case of the minerals/mining sector, IRIS gave the presentation on behalf of the operations 
manager of LKAB and Outotec mining consultants. The case study deals with AI applied to energy 
optimization of a milling machine for iron ore grinding at the Kiruna mine in Sweden. First, the 
mining installation at Kiruna was described, which is the largest underground iron ore mine in the 
world. Large grinding cylinders (10m by 7m) 
are used to break up the raw material (rocks) 
which arrive from the mine into smaller 
pieces. The grinding cylinders require a 
large energy input in order to function 
however they are very inefficient as 90% of 
the energy is lost as heat, mainly from the 
exterior of the cylinder and adjoining 
components. Therefore, a study was 
conducted to measure the heat loss over a 
3 day period, using two infra-red cameras 
pointing at the cylinders. This data was 
combined with the PLC machine control 
data, and several experiments were 
conducted, such as increasing/decreasing 
rotation speed and increasing water supply. 
The experiments were limited in 
scope/range as the grinders are in production and large changes could produce damage or 
stoppage. Rule induction models were built to predict the power supply as output given the 
temperature and control parameter values, and were compared with statistical models (regression) 
for the same data. It was possible to build a data driven system model with a high precision (95%) 
for the milling machine. The rule based model also gave insights about relations between the 
thermal images, the machine control parameters and the variations from the experiments. 
However, it was commented that the temperature of the surface of the grinder was rather 
homogenous due to the internal cladding of the cylinder, and a second useful future application of 
the thermal images would be to detect anomalies for preventive maintenance. 

 

Figure 21 - Mining/materials sector: thermal image of mill 
cylinder with four interest areas defined. 
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